2,355 research outputs found

    Traditional and new principles of perceptual grouping

    Get PDF
    Perceptual grouping refers to the process of determining which regions and parts of the visual scene belong together as parts of higher order perceptual units such as objects or patterns. In the early 20th century, Gestalt psychologists identified a set of classic grouping principles which specified how some image features lead to grouping between elements given that all other factors were held constant. Modern vision scientists have expanded this list to cover a wide range of image features but have also expanded the importance of learning and other non-image factors. Unlike early Gestalt accounts which were based largely on visual demonstrations, modern theories are often explicitly quantitative and involve detailed models of how various image features modulate grouping. Work has also been done to understand the rules by which different grouping principles integrate to form a final percept. This chapter gives an overview of the classic principles, modern developments in understanding them, and new principles and the evidence for them. There is also discussion of some of the larger theoretical issues about grouping such as at what stage of visual processing it occurs and what types of neural mechanisms may implement grouping principles

    Counterbalancing for serial order carryover effects in experimental condition orders

    Get PDF
    Reactions of neural, psychological, and social systems are rarely, if ever, independent of previous inputs and states. The potential for serial order carryover effects from one condition to the next in a sequence of experimental trials makes counterbalancing of condition order an essential part of experimental design. Here, a method is proposed for generating counterbalanced sequences for repeated-measures designs including those with multiple observations of each condition on one participant and self-adjacencies of conditions. Condition ordering is reframed as a graph theory problem. Experimental conditions are represented as vertices in a graph and directed edges between them represent temporal relationships between conditions. A counterbalanced trial order results from traversing an Euler circuit through such a graph in which each edge is traversed exactly once. This method can be generalized to counterbalance for higher order serial order carryover effects as well as to create intentional serial order biases. Modern graph theory provides tools for finding other types of paths through such graph representations, providing a tool for generating experimental condition sequences with useful properties

    Edge-region grouping in figure-ground organization and depth perception.

    Get PDF
    Edge-region grouping (ERG) is proposed as a unifying and previously unrecognized class of relational information that influences figure-ground organization and perceived depth across an edge. ERG occurs when the edge between two regions is differentially grouped with one region based on classic principles of similarity grouping. The ERG hypothesis predicts that the grouped side will tend to be perceived as the closer, figural region. Six experiments are reported that test the predictions of the ERG hypothesis for 6 similarity-based factors: common fate, blur similarity, color similarity, orientation similarity, proximity, and flicker synchrony. All 6 factors produce the predicted effects, although to different degrees. In a 7th experiment, the strengths of these figural/depth effects were found to correlate highly with the strength of explicit grouping ratings of the same visual displays. The relations of ERG to prior results in the literature are discussed, and possible reasons for ERG-based figural/depth effects are considered. We argue that grouping processes mediate at least some of the effects we report here, although ecological explanations are also likely to be relevant in the majority of cases

    Response dependence of reversal‐related ERP components in perception of ambiguous figures

    Get PDF
    Perceptual multi‐stability is characterized by alternating interpretations of an unchanging stimulus input. The reversal negativity (RN) and reversal positivity (RP) ERP components show differences in electrophysiological responses between trials on which participants experience a perceptual reversal of a multi‐stable stimulus versus trials without a reversal (i.e., stable). However, it is unclear to what extent these two ERP components reflect reversal‐related perceptual processing rather than task and response processes. To address this, we varied task and response requirements while measuring the RN and RP. In the standard reversal task, participants indicated whether they saw a perceptual reversal on each trial. In contrast, in the identity task participants reported perceived identity of the stimulus (e.g., face or vase) without any reference to reversals. In some blocks, reversal trials required a response whereas in other blocks stable trials required a response. We found that the RN appeared independently of task and response style. However, the early latency RP component was only present when participants responded manually. For non‐response trials, a component was found during the same latency as the RP but with inverted polarity. Our results suggest that the early RP component is dependent on response‐related processes rather than being a pure neural signature of perceptual processes related to endogenous perceptual reversals

    Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    Get PDF
    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG

    Assessing the quality of absolute hydration free energies among CHARMM‐compatible ligand parameterization schemes

    Full text link
    Multipurpose atom‐typer for CHARMM (MATCH), an atom‐typing toolset for molecular mechanics force fields, was recently developed in our laboratory. Here, we assess the ability of MATCH‐generated parameters and partial atomic charges to reproduce experimental absolute hydration free energies for a series of 457 small neutral molecules in GBMV2, Generalized Born with a smooth SWitching (GBSW), and fast analytical continuum treatment of solvation (FACTS) implicit solvent models. The quality of hydration free energies associated with small molecule parameters obtained from ParamChem, SwissParam, and Antechamber are compared. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, these automated parameterization schemes with GBMV2 and GBSW demonstrate reasonable agreement with experimental hydration free energies (average unsigned errors of 0.9–1.5 kcal/mol and R 2 of 0.63–0.87). GBMV2 and GBSW consistently provide slightly more accurate estimates than FACTS, whereas Antechamber parameters yield marginally more accurate estimates than the current generation of MATCH, ParamChem, and SwissParam parameterization strategies. Modeling with MATCH libraries that are derived from different CHARMM topology and parameter files highlights the importance of having sufficient coverage of chemical space within the underlying databases of these automated schemes and the benefit of targeting specific functional groups for parameterization efforts to maximize both the breadth and the depth of the parameterized space. © 2013 Wiley Periodicals, Inc. Ligand parameterization for molecular mechanics simulations is computationally intensive, requiring long multistep optimization procedures. Recently there has been an influx of automated parameterization tools for the CHARMM force field. These tools radically speed up the process, but it remains unclear whether accuracy is sacrificed to a significant extent. The research presented in this article uses a set of 457 small molecules to quantify the accuracy of four automated parameterization tools by computing absolute hydration free energies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97284/1/23199_ftp.pd

    Predicting extreme p K a shifts in staphylococcal nuclease mutants with constant pH molecular dynamics

    Full text link
    Accurate computational methods of determining protein and nucleic acid p K a values are vital to understanding pH‐dependent processes in biological systems. In this article, we use the recently developed method constant pH molecular dynamics (CPHMD) to explore the calculation of highly perturbed p K a values in variants of staphylococcal nuclease (SNase). Simulations were performed using the replica exchange (REX) protocol for improved conformational sampling with eight temperature windows, and yielded converged proton populations in a total sampling time of 4 ns. Our REX‐CPHMD simulations resulted in calculated p K a values with an average unsigned error (AUE) of 0.75 pK units for the acidic residues in Δ + PHS, a hyperstable variant of SNase. For highly p K a ‐perturbed SNase mutants with known crystal structures, our calculations yielded an AUE of 1.5 pK units and for those mutants based on modeled structures an AUE of 1.4 pK units was found. Although a systematic underestimate of pK shifts was observed in most of the cases for the highly perturbed pK mutants, correlations between conformational rearrangement and plasticity associated with the mutation and error in p K a prediction was not evident in the data. This study further extends the scope of electrostatic environments explored using the REX‐CPHMD methodology and suggests that it is a reliable tool for rapidly characterizing ionizable amino acids within proteins even when modeled structures are employed. Proteins 2011; © 2011 Wiley‐Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/88038/1/23195_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/88038/2/PROT_23195_sm_SuppInfo.pd

    Frequent side chain methyl carbon‐oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures

    Full text link
    The propensity of backbone Cα atoms to engage in carbon‐oxygen (CH···O) hydrogen bonding is well‐appreciated in protein structure, but side chain CH···O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH···O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH···O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH···O hydrogen bonding contributes to the energetics of protein structure and folding. Proteins 2015; 83:403–410. © 2014 Wiley Periodicals, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110709/1/prot24724-sup-0001-suppinfo01.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/110709/2/prot24724.pd

    Breaking the Circularity in Circular Analyses: Simulations and Formal Treatment of the Flattened Average Approach

    Get PDF
    There has been considerable debate and concern as to whether there is a replication crisis in the scientific literature. A likely cause of poor replication is the multiple comparisons problem. An important way in which this problem can manifest in the M/EEG context is through post hoc tailoring of analysis windows (a.k.a. regions-of-interest, ROIs) to landmarks in the collected data. Post hoc tailoring of ROIs is used because it allows researchers to adapt to inter-experiment variability and discover novel differences that fall outside of windows defined by prior precedent, thereby reducing Type II errors. However, this approach can dramatically inflate Type I error rates. One way to avoid this problem is to tailor windows according to a contrast that is orthogonal (strictly parametrically orthogonal) to the contrast being tested. A key approach of this kind is to identify windows on a fully flattened average. On the basis of simulations, this approach has been argued to be safe for post hoc tailoring of analysis windows under many conditions. Here, we present further simulations and mathematical proofs to show exactly why the Fully Flattened Average approach is unbiased, providing a formal grounding to the approach, clarifying the limits of its applicability and resolving published misconceptions about the method. We also provide a statistical power analysis, which shows that, in specific contexts, the fully flattened average approach provides higher statistical power than Fieldtrip cluster inference. This suggests that the Fully Flattened Average approach will enable researchers to identify more effects from their data without incurring an inflation of the false positive rate
    corecore